119 research outputs found

    Innovations in the Surgery of Cerebral Aneurysms: Enhanced Visualization, Perfusion, and Function Monitoring

    Get PDF
    Surgery of cerebral aneurysms has evolved over the years. Advances regard enhanced intraoperative visualization and monitoring of both function and perfusion. Technological assistance used in oncological or skull base surgery, such as intraoperative neurophysiological monitoring (IONM) or endoscopy, now adopt to vascular surgery. Intraoperative indocyanine green video angiography (ICG-VA) and techniques for its interpretation (squeezing maneuver; entrapment sign), endoscopes, and exoscopes increase visualization. Flow evaluation by microflow probe permits perfusion monitoring; IONM allows functional monitoring. Bypasses replace flow in complex aneurysm cases. Pre-, intra-, and postoperative imaging and flow measurement techniques help in donor selection and follow-up. Despite some progression in the aneurysm clips, the principle has not changed. Innovation and even change of principle in aneurysm exclusion might be desirable. Basic research in aneurysm wall and flow dynamics might in the future change the paradigms of cerebral aneurysm treatment

    Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: a preliminary study

    Get PDF
    Background: Grading of meningiomas is important in the choice of the most effective treatment for each patient. Purpose: To determine the diagnostic accuracy of a deep convolutional neural network (DCNN) in the differentiation of the histopathological grading of meningiomas from MR images. Study Type: Retrospective. Population: In all, 117 meningioma-affected patients, 79 World Health Organization [WHO] Grade I, 32 WHO Grade II, and 6 WHO Grade III. Field Strength/Sequence: 1.5 T, 3.0 T postcontrast enhanced T1 W (PCT1W), apparent diffusion coefficient (ADC) maps (b values of 0, 500, and 1000 s/mm2). Assessment: WHO Grade II and WHO Grade III meningiomas were considered a single category. The diagnostic accuracy of the pretrained Inception-V3 and AlexNet DCNNs was tested on ADC maps and PCT1W images separately. Receiver operating characteristic curves (ROC) and area under the curve (AUC) were used to asses DCNN performance. Statistical Test: Leave-one-out cross-validation. Results: The application of the Inception-V3 DCNN on ADC maps provided the best diagnostic accuracy results, with an AUC of 0.94 (95% confidence interval [CI], 0.88\u20130.98). Remarkably, only 1/38 WHO Grade II\u2013III and 7/79 WHO Grade I lesions were misclassified by this model. The application of AlexNet on ADC maps had a low discriminating accuracy, with an AUC of 0.68 (95% CI, 0.59\u20130.76) and a high misclassification rate on both WHO Grade I and WHO Grade II\u2013III cases. The discriminating accuracy of both DCNNs on postcontrast T1W images was low, with Inception-V3 displaying an AUC of 0.68 (95% CI, 0.59\u20130.76) and AlexNet displaying an AUC of 0.55 (95% CI, 0.45\u20130.64). Data Conclusion: DCNNs can accurately discriminate between benign and atypical/anaplastic meningiomas from ADC maps but not from PCT1W images. Level of evidence: 2 Technical Efficacy: Stage

    The Three-Layer Concentric Model of Glioblastoma: Cancer Stem Cells, Microenvironmental Regulation, and Therapeutic Implications

    Get PDF
    Tumors arising in the central nervous system are thought to originate from a sub-population of cells named cancer stem cells (CSCs) or tumor initiating cells (TICs) that possess an immature phenotype, combined with self-renewal and chemotherapy resistance capacity. Moreover, in the last years, these cells have been identified in particular brain tumor niches fundamental for supporting their characteristics. In this paper, we report studies from many authors demonstrating that hypoxia or the so called “hypoxic niche” plays a crucial role in controlling CSC molecular and phenotypic profile. We recently investigated the relationship existing between Glioblastoma (GBM) stem cells and their niche, defining the theory of three-concentric layers model for GBM mass. According to this model, GBM stem cells reside preferentially within the hypoxic core of the tumour mass, while more differentiated cells are mainly localized along the peripheral and vascularized part of the tumour. This GBM model provides explanation of the effects mediated by the tumour microenvironment on the phenotypic and molecular regulation of GBM stem cells, describing their spatial distribution in the tumor bulk. Moreover, we discuss the possible clinical implications of the creation of this model for future GBM patient management and novel therapeutic strategies development

    Addressing the selective role of distinct prefrontal areas in response suppression: A study with brain tumor patients

    Get PDF
    The diverging evidence for functional localization of response inhibition within the prefrontal cortex might be justified by the still unclear involvement of other intrinsically related cognitive processes like response selection and sustained attention. In this study, the main aim was to understand whether inhibitory impairments, previously found in patients with both left and right frontal lesions, could be better accounted for by assessing these potentially related cognitive processes. We tested 37 brain tumor patients with left prefrontal, right prefrontal and non-prefrontal lesions and a healthy control group on Go/No-Go and Foreperiod tasks. In both types of tasks inhibitory impairments are likely to cause false alarms, although additionally the former task requires response selection and the latter target detection abilities. Irrespective of the task context, patients with right prefrontal damage showed frequent Go and target omissions, probably due to sustained attention lapses. Left prefrontal patients, on the other hand, showed both Go and target omissions and high false alarm rates to No-Go and warning stimuli, suggesting a decisional rather than an inhibitory impairment. An exploratory whole-brain voxel-based lesion-symptom mapping analysis confirmed the association of left ventrolateral and dorsolateral prefrontal lesions with target discrimination failure, and right ventrolateral and medial prefrontal lesions with target detection failure. Results from this study show how left and right prefrontal areas, which previous research has linked to response inhibition, underlie broader cognitive control processes, particularly involved in response selection and target detection. Based on these findings, we suggest that successful inhibitory control relies on more than one functionally distinct process which, if assessed appropriately, might help us to better understand inhibitory impairments across different pathologies

    Immunosuppressive activity of tumor-infiltrating myeloid cells in patients with meningioma

    Get PDF
    Meningiomas WHO grade I and II are common intracranial tumors in adults that normally display a benign outcome, but are characterized by a great clinical heterogeneity and frequent recurrence of the disease. Although the presence of an immune cell infiltrate has been documented in these tumors, a clear phenotypical and functional characterization of the immune web is missing. Here, we performed an extensive immunophenotyping of peripheral blood and fresh tumor tissue at surgery by multiparametric flow cytometry in 34 meningioma patients, along with immunosuppressive activity of sorted cells of myeloid origin. Four subsets of myeloid cells, phenotypically corresponding to myeloid-derived suppressor cells (MDSCs) are detectable in the blood and in the tumor tissue of patients and three of them are significantly expanded in the blood of patients, but show no evidence of suppressive activity. At the tumor site, a large leukocyte infiltrate is present, predominantly constituted by CD33 myeloid cells, largely composed of macrophages endowed with suppressive activity and significantly expanded in grade II meningioma patients as compared to grade I

    Molecular Mechanisms of HIF-1α Modulation Induced by Oxygen Tension and BMP2 in Glioblastoma Derived Cells

    Get PDF
    BACKGROUND: Glioblastoma multiforme (GBM) is one of most common and still poorly treated primary brain tumors. In search for new therapeutic approaches, Bone Morphogenetic Proteins (BMPs) induce astroglial commitment in GBM-derived cells in vitro. However, we recently suggested that hypoxia, which is characteristic of the brain niche where GBM reside, strongly counter-acts BMP effects. It seems apparent that a more complete understanding of the biology of GBM cells is needed, in particular considering the role played by hypoxia as a signaling pathways regulator. HIF-1alpha is controlled at the transcriptional and translational level by mTOR and, alike BMP, also mTOR pathway modulates glial differentiation in central nervous system (CNS) stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigate the role of mTOR signaling in the regulation of HIF-1alpha stability in primary GBM-derived cells maintained under hypoxia (2% oxygen). We found that GBM cells, when acutely exposed to high oxygen tension, undergo Akt/mTOR pathway activation and that BMP2 acts in an analogous way. Importantly, repression of Akt/mTOR signaling is maintained by HIF-1alpha through REDD1 upregulation. On the other hand, BMP2 counter-acts HIF-1alpha stability by modulating intracellular succinate and by controlling proline hydroxylase 2 (PHD2) protein through inhibition of FKBP38, a PHD2 protein regulator. CONCLUSIONS/SIGNIFICANCE: In this study we elucidate the molecular mechanisms by which two pro-differentiating stimuli, BMP2 and acute high oxygen exposure, control HIF-1alpha stability. We previously reported that both these stimuli, by inducing astroglial differentiation, affect GBM cells growth. We also found differences in high oxygen and BMP2 sensitivity between GBM cells and normal cells that should be further investigated to better define tumor cell biology

    HyperProbe consortium: innovate tumour neurosurgery with innovative photonic solutions

    Get PDF
    Recent advancements in imaging technologies (MRI, PET, CT, among others) have significantly improved clinical localisation of lesions of the central nervous system (CNS) before surgery, making possible for neurosurgeons to plan and navigate away from functional brain locations when removing tumours, such as gliomas. However, neuronavigation in the surgical management of brain tumours remains a significant challenge, due to the inability to maintain accurate spatial information of pathological and healthy locations intraoperatively. To answer this challenge, the HyperProbe consortium have been put together, consisting of a team of engineers, physicists, data scientists and neurosurgeons, to develop an innovative, all-optical, intraoperative imaging system based on (i) hyperspectral imaging (HSI) for rapid, multiwavelength spectral acquisition, and (ii) artificial intelligence (AI) for image reconstruction, morpho-chemical characterisation and molecular fingerprint recognition. Our HyperProbe system will (1) map, monitor and quantify biomolecules of interest in cerebral physiology; (2) be handheld, cost-effective and user-friendly; (3) apply AI-based methods for the reconstruction of the hyperspectral images, the analysis of the spatio-spectral data and the development and quantification of novel biomarkers for identification of glioma and differentiation from functional brain tissue. HyperProbe will be validated and optimised with studies in optical phantoms, in vivo against gold standard modalities in neuronavigational imaging, and finally we will provide proof of principle of its performances during routine brain tumour surgery on patients. HyperProbe aims at providing functional and structural information on biomarkers of interest that is currently missing during neuro-oncological interventions

    Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review

    Get PDF
    Purpose: The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. Methods: A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. Results: A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). Conclusions: A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity
    corecore